Mouvements Rectilignes

A savoir

Les mouvements rectilignes

Un mouvement est dit rectiligne s'il s'effectue selon une trajectoire qui est une droite.

Condition pour qu'un mouvement rectiligne soit uniforme

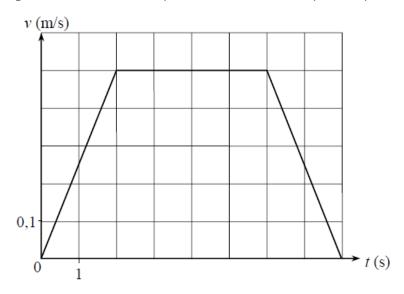
Le mouvement rectiligne d'un point est dit uniforme si son vecteur vitesse est constant en valeur, en direction et en sens.

Position d'un point en mouvement rectiligne uniforme

L'abscisse d'un pointM en mouvement rectiligne uniforme est donc une fonction affine du temps de forme:

$$x = v_0 t + x_0$$
 où v_0 est la vitesse du point x_0 l'abscisse à $t = 0$

Position d'un point en mouvement uniformément varié


- Si le mouvement est uniformément accéléré ($a_0 > 0$) alors la vitesse est croissante au cours du temps.
- Si le mouvement est uniformément ralenti ($a_0 < 0$) alors la vitesse est décroissante au cours du temps

$$v = a_0 t + v_0$$

 $x = 1/2 a_0 t^2 + v_0 t + x_0$

Exercice N°1

Un particulier désire installer un portail coulissant motorisé. Pour réduire l'usure du portail et ne pas trop fatiguer la mécanique par les à-coups, on lui conseille d'utiliser un moteur faisant varier lentement la vitesse d'ouverture (et de fermeture).

Le diagramme de la vitesse du portail en fonction du temps est représenté ci-dessous :

Fiche N°1-2-1 Le mouvement

Mouvements Rectilignes

1) Quelle est la nature du mouvement pendant les deux premières secondes d'ouverture ? Justifier la réponse.
Custiner la repense.
2) Calculer l'accélération du portail pendant les deux premières secondes.
3) En déduire le chemin parcouru par le portail pendant les deux premières secondes.
4) Quelle est la vitesse du portail lorsque celui-ci est animé d'un mouvement rectiligne uniforme?
5) Quelle distance a parcouru le portail pendant son mouvement rectiligne uniforme.
6) Sachant que le chemin parcouru pendant les deux dernières secondes est le même que celui calculé à la question 3, quelle est la distance totale parcourue par le portail ?
Geral Gardine a la queetteri e, quelle est la distarios totale par sour de par le pertair .
Exercice 2 Une moto, animée d'un mouvement rectiligne uniformément accéléré, atteint, départ arrêté,
la vitesse de 100 km/h sur une distance de 150 m.
On cherche à vérifier par le calcul le temps mis par la moto pour parcourir cette distance. 1) Calculer en m/s², l'accélération a de ce mouvement. Écrire le résultat arrondi à 3 chiffres
significatifs.
2) En déduire, en seconde, le temps correspondant à ce parcours. Écrire le résultat arrondi
au dixième.

Fiche N°1-2-1 Le mouvement

Mouvements Rectilignes

Exercice 3


Un camion chargé de déblais va les vider dans une décharge. En partant du chantier, il roule d'abord à la vitesse constante de 50,4 km/h sur une distance de 2,8 km.

d'abord à la vitesse constante de 50,4 km/h sur une distance de 2,8 km.
1) Calculer la durée nécessaire pour effectuer ce trajet. Exprimer le résultat en seconde.
Ensuite, le camion freine pour s'arrêter avec une décélération constante $a = -1.4 \text{ m/s}^2$.
2) Calculer la durée du freinage.
3) Calculer la distance de freinage, puis la distance totale parcourue par le camion entre le chantier et la décharge.

Exercice 6

Lors du transport de matériaux sur un chantier de travaux publics, un camion effectue son chargement au point *A*, démarre et atteint une vitesse de 36 km/h au point *B*, il conserve cette

vitesse jusqu'au point C, à partir de là, il freine et s'arrête au point D pour décharger.

Pour les 3 mouvements on impose le point A comme origine des temps (t = 0) et des espaces

(x = 0). Unités préconisées : longueur, le mètre ; et le temps, la seconde.

- 1) Mouvement I
- a) Sachant que l'accélération est constante, la calculer.
- b) Ecrire et déterminer les équations caractéristiques de ce mouvement.
- c) En déduire à quel instant *t* le camion arrivera au point *B*.

Fiche N°1-2-1 Le mouvement

Mouvements Rectilignes

2) Mouvement II (On rappelle que l'origine des temps et des espaces est prise en B).	
a) Quel est le type de ce mouvement ?b) Ecrire et déterminer les équations de ce mouvement.	
c) En déduire à quel instant <i>t</i> le camion arrivera au point <i>C</i> .	
	_/
 3) Mouvement III (L'origine étant toujours définie par A.) La décélération est constante et égale à 2m/s². a) Quel est le type de ce mouvement ? b) Ecrire et déterminer les équations de ce mouvement. c) À quel instant t le camion arrivera-t-il au point D? d) Quelle est la distance du freinage ? 	