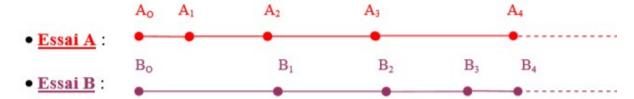

Fiche N°5-4
Mouvement et interaction


Mouvement rectiligne accéléré

Une table à coussin d'air permet d'étudier le mouvement d'un solide. A intervalles de temps régulier, sont enregistrés sous forme de points notés (A_O, A_I, A₂ etc ...) les positions successives du solide. Deux essais différents sont réalisés.

Pour chacun d'eux, le durée entre l'enregistrement de 2 positions successives du solide est de 40 ms.

• Voici représentés, à l'échelle ½ la reproduction des enregistrements

Fiche N°5-4 Mouvement et interaction

Mouvement rectiligne accéléré

• Etude du mouvement A:

1. On	calcule : A_1 - $A_0 = \dots$		puis $V_{1-0} =$	$\frac{\mathbf{A}_1 \cdot \mathbf{A}_0}{\mathbf{t}_1 \cdot \mathbf{t}_0} = \dots$		
2. On	calcule : A_2 - A_1 =		puis V ₂₋₁ =	$\frac{A_2 - A_1}{t_2 - t_1} = \dots$		
3. On	en déduit que : $a = \frac{1}{2}$	$\frac{V_{2-1}-V_{1-0}}{t_2-t_0} = \dots$				
4. On	calcule : A_3 - A_2 =		puis V ₃₋₂	$= \frac{A_3 - A_2}{t_3 - t_2} = \dots$		
5. On	en déduit que : $a = \frac{1}{2}$	$\frac{V_{3-2}-V_{2-1}}{t_3-t_1} = \dots$				
6. On	calcule : A_4 - $A_3 = \dots$		puis $V_{4-3} =$	$\frac{A_4 - A_3}{t_4 - t_3} = \dots$		
7. On (en déduit que : $a = \frac{V_4}{I_1}$	-3-V ₃₋₂ =				
8. On constate que l'accélération « a » :						
Cela	a signifie que :					
Le mouvement est appelé :						
• Etude du mouvement B :						
9. On (calcule : B ₁ -B ₀ =		puis V ₁₋	$_{0}=\frac{B_{1}-B_{0}}{t_{1}-t_{0}}=.$		
10. On calcule : B ₂ -B ₁ =		puis V ₂₋₁	$a_1 = \frac{B_2 - B_1}{t_2 - t_1} = 0$			
11) Reprendre les calculs pour les points B2, B3 et B4						
V						
а						

Fiche N°5-4 Mouvement et interaction

Mouvement rectiligne accéléré

12. On constate que l'acceleration « a » :
•
Cela signifie que :
Le mouvement est appelé :
<u>Remarque</u> : on dit aussi : M.R.U.R = Mouvement Rectiligne Uniformément Ralenti
Équations du mouvement
• Equation M.R.U.A: $d = \frac{1}{2} \cdot a \cdot t^2 + v_o \cdot t + x_o$
• Relation entre a et v : $v = a.t + v_o$ ou $a = \frac{v - v_o}{t}$ avec a en m/s² ou m.s²²
13. Quelle est la vitesse du solide A au bout de 1,5 secondes, en m/s puis en km/h ?
14. Quelle est la position du solide A au bout de 1,5 secondes ?
15. Quelle est la vitesse du solide B au bout de 0,2 secondes, en m/s puis en km/h ?
16. Au bout de combien de temps le solide B va-t-il s'arrêter ?