1 H 1,008																	2 He 4,00
3 Li 6,94	4 Be 9,01											5 B 10,81	6 C 12,01	7 N 14,01	8 O 16,00	9 F 19,00	10 Ne 20,18
11 Na 22,99	12 Mg 24,30											13 Al 26,98	14 Si 28,09	15 P 30,97	16 S 32,06	17 Cl 35,45	18 Ar 39,95
19 K 39,10	20 Ca 40,08	21 Sc 44,96	22 Ti 47,87	23 V 50,94	24 Cr 52,00	25 Mn 54,94	26 Fe 55,85	27 Co 58,93	28 Ni 58,69	29 Cu 63,55	30 Zn 65,38	31 Ga 69,72	32 Ge 72,63	33 As 74,92	34 Se 78,97	35 Br 79,90	36 Kr 83,80
37 Rb 85,47	38 Sr 87,62	39 Y 88,91	40 Zr 91,22	41 Nb 92,91	42 Mo 95,95	43 Tc (97)	44 Ru 101,07	45 Rh 102,91	46 Pd 106,42	47 Ag 107,87	48 Cd 112,41	49 In 114,82	50 Sn 118,71	51 Sb 121,76	52 Te 127,60	53 126,90	54 Xe 131,29
55 Cs 132,91	56 Ba 137,33		72 Hf 178,49	73 Ta 180,95	74 W 183,84	75 Re 186,21	76 Os 190,23	77 Ir 192,22	78 Pt 195,08	79 Au 196,97	80 Hg 200,59	81 TI 204,38	82 Pb 207,2	83 Bi 208,98	84 Po (209)	85 At (210)	86 Rn (222)
87 Fr (223)	88 Ra (226)		104 Rf (267)	105 Db (268)	106 Sg (269)	107 Bh (270)	108 Hs (269)	109 Mt (278)	110 Ds (281)	111 Rg (282)	112 Cn (285)	113 Nh (286)	114 Fl (289)	115 Mc (290)	116 Lv (293)	117 Ts (294)	118 Og (294)

Soit la réaction suivante :

$$2H_2O_2 \rightarrow 2H_2O + O_2$$

Combien de moles de H_2O seront produites à partir de $42,0\ g$ de H_2O_2 ?

moles (arrondir à 3 chiffres significatifs)

On considère la réaction suivante :

$$\rm NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$$

Quelle masse de $\rm AgCl$ en grammes peut-on obtenir à partir de $\rm 7,00~g$ de $\rm NaCl$ et $\rm 95,0~g$ de $\rm AgNO_3$?

g (arrondir à 3 chiffres significatifs)

On considère la réaction suivante :

$$\mathrm{C_3H_8} + 5\mathrm{O_2} \rightarrow 3\mathrm{CO_2} + 4\mathrm{H_2O}$$

Quelle masse de ${
m CO_2}$ en grammes peut-on obtenir à partir de $7{,}00~{
m g}$ de ${
m C_3H_8}$ et $98{,}0~{
m g}$ de ${
m C_2}$?

g (arrondir à 3 chiffres significatifs)

On considère la réaction suivante :

$$\mathrm{Cu} + 2\mathrm{AgNO_3} \rightarrow 2\mathrm{Ag} + \mathrm{Cu(NO_3)_2}$$

Quelle masse de Ag en grammes peut-on obtenir à partir de 19.0~g de Cu et 125~g de $AgNO_3$?

g (arrondir à 3 chiffres significatifs)

Soit la réaction suivante :

$$Zn + CuCl_2 \rightarrow ZnCl_2 + Cu$$

Combien de moles de $ZnCl_2$ seront produites si on met 21,0~g de Zn en présence d'un excès de $CuCl_2$?

moles (arrondir à 3 chiffres significatifs)

Soit la réaction suivante :

$$2KClO_3 \rightarrow 2KCl + 3O_2$$

Combien de moles de KCl seront produites à partir de 15,0 g de $KClO_3$?

moles (arrondir à 3 chiffres significatifs)

Soit la réaction suivante :

$$\mathrm{Mg(OH)_9} + \mathrm{2HCl} \rightarrow \mathrm{MgCl_2} + \mathrm{2H_2O}$$

Combien de moles de $MgCl_2$ seront produites à partir de 65,0~g de $Mg(OH)_2$, en considérant que HCl est en excès ?

Soit la réaction suivante :
$\mathrm{C_3H_8} + 5\mathrm{O_2} ightarrow 3\mathrm{CO_2} + 4\mathrm{H_2O}$
Combien de moles de ${ m CO_2}$ seront produites si on met $79,\!0~{ m g}$ de ${ m C_3H_8}$ en présence d'un excès de ${ m O_2}$?
moles (arrondir à 3 chiffres significatifs)
Soit la réaction suivante :
$\rm NaCl + AgNO_3 \rightarrow AgCl + NaNO_3$

Combien de moles de AgCl seront produites à partir de $83,\!0~g$ de $AgNO_3$, en considérant que NaCl est en excès ?

moles (arrondir à trois chiffres significatifs)