L'albédo terrestre

Ensoleillement

Données : mesure de l'éclairement

Le lux est une unité de mesure de l'éclairement lumineux (symbole : lx). Il caractérise l'intensité lumineuse reçu par unité de surface.

Au cours de la séance on pourra utiliser un capteur de lumière disponible sur certains smartphones. Ce capteur se situe sur la face "avant" du Smartphone (voir ci-contre).

Préalable : vérification de la présence du capteur de lumière

À l'aide du smartphone, lancer l'application Phyphox 🏴

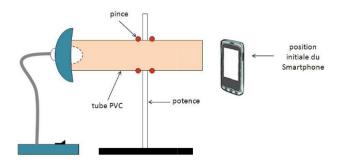
Vérifier sur l'écran d'accueil la présence (ou l'absence) du capteur de luminosité : Si le capteur est absent, l'indication apparaît grisée dans la liste.

Pour les expériences qui suivent seuls les téléphones munis du capteur de luminosité pourront être utilisés.

Principe d'une mesure avec le capteur de lumière

Si le capteur est présent, sélectionner "Luminosité".

Sur l'écran qui s'affiche, sélectionner (voir ci-dessous à gauche), passer alors plusieurs fois la main devant l'écran du Smartphone, il doit alors présenter une série de pics et de creux (voir ci-dessous à droite). La mesure s'arrête avec la commande ...



1. Etude expérimentale

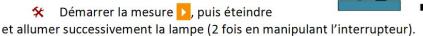
1.1. Puissance reçue et distance

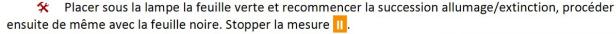
Reprendre le montage utilisé lors de la séance précédente. À l'aide du smartphone, lancer l'application Phyphox

Positionner le smartphone verticalement dans l'axe du tube.

🔈 1.1.1. Que remarque-t-on ?

🔈 1.1.2 Citer un paramètre dont peut dépendre la puissance solaire reçue par une planète.


L'albédo terrestre


1.2. Diffusion de la lumière

Matériel: lampe – smartphone – feuille noire – feuille verte.

Positionner la lampe de telle façon qu'elle éclaire la surface blanche de la paillasse.

Le smartphone est placé de telle façon que le capteur de luminosité ne reçoive pas directement les rayons issus de la lampe.

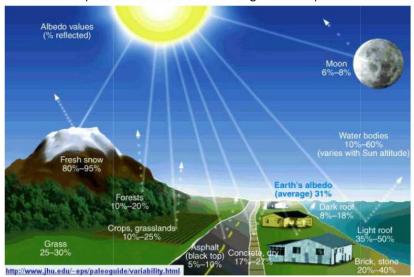
1.2.1. Que remarque-t-on ?

'surface" à

étudier

position du

smartphone


1.2.2 Toutes les surfaces rediffusent-elles de façon égale le rayonnement ?

🔈 1.2.3. Quelle est la surface plus "réfléchissante" ? La moins "réfléchissante" ?

1.2.4. Que peut-on dire de la lumière qui n'est pas diffusée ?

2. Albédo

L'albédo du système Terre-atmosphère est la fraction de l'énergie solaire qui est réfléchie vers l'espace.

L'albédo terrestre

<u>Définition</u>: L'albédo est lié au pouvoir réfléchissant d'une surface, c'est le rapport entre l'énergie lumineuse réfléchie par cette surface et l'énergie lumineuse qu'elle reçoit. La valeur de l'albédo varie ainsi entre 0 (surface totalement absorbante, aucune radiation n'est réfléchie) et 1 (surface totalement réfléchissante, aucune radiation n'est absorbée). L'albédo peut s'exprimer en pourcentage (%).

2.1. D'après les expériences du paragraphe 1.2, proposer un classement des surfaces testées par albédo croissant.

2.2 Les valeurs du schéma ci-après sont-elles en concordances avec les observations expérimentales ?
 2.3. Retrouver dans ce document l'albédo moyen du système Terre – Atmosphère.

3. Bilan radiatif du système Terre - Atmosphère

Document 1: Placés au-dessus de l'atmosphère, les satellites peuvent mesurer le rayonnement solaire incident, c'est-à-dire reçu à la surface de l'atmosphère :

La puissance moyenne reçue par le système Terre – Atmosphère est de 342 W.m⁻²

Par ailleurs on peut également faire le même type de mesures à la surface de la Terre.

Rayonnement incident annuel moyen au sommet de l'atmosphère en W.m⁻²

Rayonnement incident annuel moyen à la surface de la Terre en W.m⁻²

Valeurs en W.m⁻²

Ode 100 200 300 400

3.1. L'atmosphère terrestre joue-t-elle un rôle sur la quantité d'énergie solaire parvenant à la surface de la Terre ? Argumenter en utilisant le document ci-dessus.

<u>Document</u> 2 : Le système Terre-Atmosphère est donc un corps éclairé qui lui-même émet des rayonnements tel un corps noir auquel on peut appliquer la loi de Wien.

 Ouvrir l'animation "Le rayonnement du corps noir" sur le site phet.colorado.edu : https://phet.colorado.edu/sims/html/blackbody-spectrum/latest/blackbody-spectrum fr.html
 Ajuster la température à celle de la Terre (environ 300 K).
 Cocher la case « Valeurs du graphique ». Zoomer de façon à relever λ_{max} pour la Terre.
 Cocher la case « Etiquettes » et lire le domaine du spectre électromagnétique dans lequel λ_{max} se situe.

L'albédo terrestre

<u>Document</u> 3 : On constate alors que l'on peut dresser un bilan radiatif terrestre simplifié qui, sur une période donnée, est un équilibre dynamique entre toutes les puissances reçues et réémises : le bilan radiatif est alors nul, la température est constante.
Bilan radiatif = puissance moyenne reçue – puissance réfléchie (albedo) – puissance réémise
3.3. Quelle est la valeur de la puissance réémise par le système Terre – Atmosphère ?